AutoBayes: A System for Synthesizing Data
Analysis Programs

Bernd Fischer, Johann Schumann
RIACS / NASA Ames, Moffett Field, CA 94035, USA

{fisch,schumann}@ptolemy.arc.nasa.gov

1 Introduction

Statistical approaches to data analysis, which use methods from probability theory
and numerical analysis, are well-founded but difficult to implement: the development
of a statistical data analysis program for any given application is time-consuming and
requires knowledge and experience in several areas. AUTOBAYEs [BFP99, FSP0O]
is a fully automatic high-level generator system for data analysis programs from
statistical models which aims to overcome these barriers. AUTOBAYES follows the
schema-based deductive approach to program synthesis. This means that the pro-
grams are constructed by the instantiation of generic algorithm schemas, e.g., EM.
This process is supported by logic-based deduction to ensure the consistency be-
tween specification (i.e., statistical model) and synthesized program. AUTOBAYES
uses a textual notation which is based on graphical models (more precisely, Bayesian
networks) to specify the statistical models. Currently, it synthesizes optimized and
fully commented C/C++ code which can be linked dynamically into the Matlab
and Octave environments.

In our opinion, the synthesis approach to generate and then compile source-level
programs offers several advantages over the use of libraries or direct interpretation
of Bayesian networks. Synthesis is easier to use and provides more flexibility than
libraries. It works fully automatically and, hence, the user does not need to know
about any details of the library functions. Also, the algorithm schemas can be
combined during synthesis in more flexible ways than it is possible with traditional
libraries. Furthermore, AUTOBAYES model specifications are much more declarative
than programs and thus easier to understand, communicate, and validate. Synthe-
sized code is compiled and thus more efficient than interpretated general-purpose
routines. Moreover, if a data analysis problem (or subproblem) can be solved in
closed form, a synthesis system can in many cases symbolically generate this closed
form, yielding a further speed-up over the usually iterative routines employed in
interpreters.

In the following, we present a small example showing the basic features of the
model input language. Then we describe the system architecture of AUTOBAYES
and the different layers of synthesis schemas. For further system details see [BFP99,
FSP00].

2 An Example: Mixture of Gaussians

Figure 1 shows the well-known finite mixture of Gaussians model in AUTOBAYES’s
specification language. The model (called “Mixture of Gaussians” — line 1) assumes
that each of the data points (there are n_points — line 3) belongs to one of n_classes
classes; here n_classes has been set to three (line 5), but n_points is left unspeci-
fied. Lines 15 and 16 declare the input vector and distributions for the data points!.
Each point x(I) is drawn from a Gaussian distribution c(I) with mean mu(c(I))
and standard deviation sigma(c(I)). The unknown distribution parameters can be
different for each class; hence, we declare these values as vectors (line 10). The
unknown assignment of the points to the classes (i.e., distributions) is represented
by the hidden (i.e., not observable) variable c; the class probabilities or relative
frequencies are given by the also unknown vector rho (lines 8-13). Since each point
belongs to one of the classes, the sum of the probabilities rho (I) must be equal to
one (line 9). Additional constraints (lines 4,6) express further basic assumptions.
Finally, we specify the goal inference task (line 18), maximizing the probability pr (x
| rho(I), mu(I), sigma(I)). Due to Bayes’ rule, this calculates the most likely
values of the parameters of interest, rho(I), mu(I), and sigma(I).

model mog as ’Mixture of Gaussians’;

const nat n_points as ’number of data points’
where 0 < n_points;

const nat n_classes := 3 as ’number of classes’
where n_classes << n_points;

double rho(0..n_classes - 1) as ’class probabilites’
where 1 = sum(idx(I, 0, n_classes - 1), rho(I));
10 double mu(0..n_classes - 1), sigma(0..n_classes - 1);

OO~ WN -

12 nat c(0..n_points) as ’class assignment vector’;
13 c¢(_) ~ discrete(rho);

15 data double x(0..n_points - 1) as ’data points (known)’;
16 x(I) ~ gauss(mu(c(I)),sigma(c(I)));

18 max pr(x | {rho,mu,sigma}) wrt {rho, mu, sigma};

Figure 1: AuToBAYES-specification for the mixture of Gaussians example. Line
numbers have been added for reference in the text. Keywords are underlined.

3 System Architecture

AUTOBAYES takes a model specification as shown in Figure 1 and synthesizes exe-
cutable C or C++ code from it. The main steps of this process and the correspond-
ing components can be seen in Figure 2. Although the input specification is in a

!Vector indices start with 0 in a C/C++ style.

AutoBayes Specification

‘ Input Parser ‘
2 ‘\L internal repr. of spec
Test-data
Generator Synthesis Kernel Schema ™~~~ """ 7]
library =
= @
inter mediate code % =
simple proc. language 2 D
‘ Optimizer = =-------q
\L simple proc. language g @
Code Generator B =
”””” (2=
[T

Figure 2: System architecture for AUTOBAYES.

textual form, AUTOBAYES internally works on Bayesian networks; its input parser
automatically extracts an equivalent Bayesian network from any given specification.

Synthesis proceeds by exhaustive, layered application of schemas. A schema
consists of a program fragment with open slots and a set of applicability conditions.
The slots are filled in with code pieces by the synthesis system. The conditions ul-
timately constrain how the slots can be filled; they must be discharged (i.e., proven
to hold in the given model) by the synthesis before the schema can be applied. Con-
ditions can also be described by specific network patterns; checking then proceeds
efficiently by pattern matching. This allows the network structure to guide the ap-
plication of the schemas and thus to prevent combinatorial explosion of the search
space, even if a large number of schemas is available.

AUTOBAYES currently comprises four different layers of schemas; new schemas
can easily be added without restructuring the system. Network decomposition
schemas try to break down the network into independent subnets, based on the
independence theorems in probability theory. These subnets are fed back into the
synthesis process and the resulting programs can be composed to achieve a program
for the original problem. AUTOBAYES is thus able to automatically synthesize large
programs by composition of different schemas. Formula and vector decomposition
schemas work on complex formulas, e.g., products of conditional probability distri-
butions. The application of these schemas is also guided by the network structure
but it requires substantial symbolic computations. This capability is provided by a
rewriting engine and different symbolic simplifiers and solvers. The skeleton of the
synthesized code is generated by the application of statistical algorithm schemas.
AUTOBAYES currently implements two such schemas, the EM-algorithm and k-
Means (i.e., nearest neighbor clustering). After this last network-oriented layer, all
probabilities have been converted into an atomic form which can be eliminated by
instantiating the appropriate probability density functions. The statistical problem
is thus converted into an ordinary numerical optimization problem which can be

solved symbolically or numerically. The symbolic algebra kernel allows us to find
closed-form solution for many text-book examples; the naive use of commercial tools
like Mathematica could compromise the logical soundness of the synthesis system
which could then result in incorrect programs. For the numeric solution of optimiza-
tion problem, AUTOBAYES currently provides schemas for the Newton-Raphson and
Nelder-Mead simplex algorithms. These schemas are instantiated with the function
to be optimized. In contrast to using a library function, this open approach allows
further symbolic simplifications and optimizations.

All algorithm schemas yield code in a target-independent intermediate language.
Figure 3 shows an excerpt for the intermediate code generated for the mixture
example. This synthesized code is optimized and finally converted into the language
of the target system. AUTOBAYES can currently generate dynamically linkable
C/C++ code for the Matlab and Octave environments, respectively. By using an
intermediate language we were able to cleanly separate the synthesis kernel from
any target-specific aspects. The system can currently produce programs of up to
approximately 1000 lines of C++ code from 25 lines of specification in less than 1/2
minute, thus providing up to 40:1 leverage.

The entire system is implemented in SWI Prolog? and comprises more than
20k lines of code. A sampling data generator has been added to AUTOBAYES.
Given a model specification it synthesizes code for generating synthetic random
data according to the distributions given in the model. This sampling generator is
convenient for debugging, testing and performance tuning purposes.

4 Conclusions and Future Work

Currently, AUTOBAYES can synthesize code for a number of standard textbook
examples and mixture problems; in fact, we have been able to “automate” most
examples from [EH81]. We will extend AUTOBAYES in different areas. Obviously,
its statistical capabilities grow with the number of implemented schemas. We will
add more sophisticated numeric solvers as well as schemas to deal with time-series
data, e.g., generalized verisions of Kalman filtering and smoothing. We will also
add on-line algorithm schemas which enable synthesizing code that does not require
that all data are stored in memory at once. Such schemas are especially important
for large data sets or embedded applications. The integration of more schemas on
all layers and the improvement of the built-in deductive techniques will enable us
to generate different solutions for a single problem. Then, users can pick the most
suitable one, based on their specific requirements, e.g., speed or memory size.

References

[BFP99] W. L. Buntine, B. Fischer, and T. Pressburger. “Towards Automated
Synthesis of Data Mining Programs”. In S. Chaudhuri and D. Madigan, (eds.),
Proc. 5th Intl. Conf. Knowledge Discovery and Data Mining, pp. 372-376, San
Diego, CA, August 15-18 1999. ACM Press.

?http://swi.psy.uva.nl/projects/SWI-Prolog

[EH81] B. S. Everitt and D. J. Hand. Finite Mixture Distributions. Monographs on
Applied Probability and Statists. Chapman & Hall, London, 1981.

[FSP0O0] B. Fischer, J. Schumann, and T. Pressburger. “Generating Data Analysis
Programs from Statistical Models (Position Paper)”. In W. Taha, (ed.), Proc. Intl.
Workshop Semantics Applications, and Implementation of Program Generation,
Lect. Notes Comp. Sci. 1924, pp. 212-229, Montreal, Canada, September 2000.
Springer.

// Mixture of Gaussians
proc(mog) {
const: int n_classes := 3; // Number of classes
int n_points := size(x, 1); // Number of data points
input: double x[0:n_points - 1];
output: double mu[0:n_classes-1],rho[0:n_classes-1],sigma[0:n_classes-1];
local:
// Initialization
// Randomize the hidden variable c
for([idx(pv64, 0, n_points - 1)])
c(pv64) := random_int(0, n_classes - 1);
// Initialize the local distribution; the initialization is "sharp",
// i.e., ql is set to zero almost everywhere and to one at the index
// positions determined by the initial values of the hidden variable.
for([idx(pvi54, O, n_points - 1), idx(pvis5, 0, n_classes - 1)])
ql(pvib4, pvis5) := 0;
for([idx(pv156, 0, n_points - 1)])
ql(pvib6, c(pvib6)) := 1;
// EM-loop
while(converging([vector([idx(pvi57, 0, n_classes-1)], rho(pvi57)),
vector([idx(pv158, 0, n_classes-1)], mu(pvi5s8)),
vector([idx(pvi59, 0, n_classes-1)], sigma(pvi59))]))

// Decomposition I;
// the problem to optimize the conditional probability
// pr(lc, x] | [rho, mu, sigma]) w.r.t. the variables rho, mu,
// and sigma can under the given dependencies by Bayes rule be
// decomposed into independent subproblems.
// uéiﬁg the Lagrange-multiplier 11.
11 := sum([idx(pv68, 0, n_classes - 1)],
sum([idx(pv66, O, n_points - 1)], ql(pv66, pv68)));

for([idx(pv68, O, n_classes - 1)])

rho(pvé8) := 11 ** -1 * sum([idx(pv66, O, n_points - 1)],

ql(pv66, pvés));

// The conditional probability pr([x] | [sigma, mu, c]) is
// under the given dependencies by Bayes rule equivalent to
// prod([idx(pv126, 0, n_points-1)],
// pr([x(pvi26)] | [c(pvi26), mu, sigmal))
// The probability occuring here is atomic and can be
// replaced by the respective probability density function.
for([idx(pv64, 0, n_points-1), idx(pv65, 0, n_classes-1)])

ql(pv64, pv65) := select(norm([idx(pvi6é3, 0, n_classes-1)],

exp(-1 / 2 * (-1 * mu(pvi63) + x(pv64)) **x 2 x
sigma(pvi63) ** -2) * rho(pvi63) * 2 ** (-1 / 2) *
pi ** (-1 / 2) * sigma(pvi63) **x -1), [pv65]);
}r}

Figure 3: Pseudo-code for the Mixture of Gaussians example (excerpts).

